
,iD-Ai37 690 IMPLEMENTATION OF NISITANI S BODY FORCE METHOD FOR THE i/I
SOLUTION OF NOTCH..(U) NATIONAL AERONAUTICAL
ESTABLISHMENT OTTAWA (ONTARIO) W E FRAGA FT AL. NOV 83

UNCLASSIFIED NAE-AN-17 NRC-22831 F/G 20/11 N

mEEmohEEEEosiI
EEEmhhhEEEmhhE



~W.,

132

Ilia 410. 125.

lia - El-,...

1111.25 1111.6*

MICROCOPY RESO UTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

%

-'.

5o,..?

%' %-%

eft.

%- %-

%o.--:A: ..,.-,, ..., ..... .. ... .. .... .A b:.--------- ~ A a~- -:

*" . ". ." , " . • . , ". " " "" '"w " **
* . * % * -. . . .*. . m . . . -* . ..n-.-"."' " . .. °- . -

. . - .- .-..



CanadR
UNLIMITED ,-nu"a

UNCLASSIFIED

IMPLEMENTATION OF NISITANI'S
cozBODY FORCE METHOD

FOR THE SOLUTION OF
SNOTCH PROBLEMS

by

W. E. Fraga, R. L. Hewitt

National Aeronautical Establishment

AERONAUTICAL NOTE

LLJ OTTAWA NAE-AN.17

NOVEMBER 1983 NRC NO. 22831

'" ' ,.1

cmNational Reerh Conseil national
Council Canada de reCherches Canada

............ . " . . f - - .' , : k 
=

...u1-=-a
, - = :a ',r . - us 'j = a ' a' •

'";'*'"" -q



-~~~~~~~W I z- - - - - - - - - - - --- -

NATIONAL AERONAUTICAL ESTABLISHMENT

SCIENTIFIC AND TECHNICAL PUBLICATIONS

AERONAUTICAL REPORTS:

Aeronautical Reports (LR): Scientific and technical information pertaining to aeronautics considered
important, complete, and a lasting contribution to existing knowledge.

Mechanical Engineering Reports (MS): Scientific and technical information pertaining to investigationsoutside aeronautics considered important, complete, and a lasting contribution to existing knowledge.

AERONAUTICAL NOTES (AN): Information less broad in scope but nevertheless of importance as a
contribution to existing knowledge.

LABORATORY TECHNICAL REPORTS (LTR): Information receiving limited distribution because
of preliminary data, security classification, proprietary, or other reasons.

Details on the availability of these publications may be obtained from:

Publications Section,
National Research Council Canada,
National Aeronautical Establishment,
Bldg. M-16, Room 204,
Montreal Road,
Ottawa, Ontario
KIA 0R6

. ETABLISSEMENT AEPRONAUTIQUE NATIONAL

PUBLICATIONS SCIENTIFIQUES ET TECHNIQUES
.,4

* RAPPORTS D'AIRONAUTIQUE

Rapports d'aeronautique (LR): Informations scientifiques et techniques touchant l'adronautique
jug6es importantes, compltes et durables en termes de contribution aux connaissances actuelles.

Rapports de gdnie mecanique (MS). Informations scientifiques et techniques sur la recherche externe
Sl'adronautique jugdes importantes, completes et durables en termes de contribution aux connais.

sances actuelles.

4. CAHIERS D'AERONAUTIQUE (AN): Informations de moindre porte mais importantes en termes
1 d'accroissement des connaissances.

RAPPORTS TECHNIQUES DE LABORATOIRE (LTR): Informations peu dissdmindes pour des
raisons d'usage secret, de droit de propri6t6 ou autres ou parce qu'elles constituent des donndes
pr~liminaires.

Les publications ci-dessus peuvent tre obtenues i l'adresse suivante:

Section des publications
Conseil national de recherches Canada
Etablissement aeronautique national
Im. M-16, piece 204
Chemin de Montreal
Ottawa (Ontario)
K1A 0R6

* '- ': ':':,:* : : ':,YY ... .... ... '...-..:- ..... ... "-. "- ...-......--.. .:.--,.: *~.--....--



UNLIMITED
UNCLASSIFIED

IMPLEMENTATION OF NISITANI'S BODY FORCE METHOD
FOR THE SOLUTION OF NOTCH PROBLEMS

APPLICATION DE LA METHODE DES FORCES DE NISITANI POUR
RESOUDRE DES PROBLEMES D'ENTAILLES ET DE FISSURES

by/par

W.E. Fraga*, ILL. Hewitt

National Aeronautical Establishment

* Department of Mathematics, University of Alberta

AERONAUTICAL NOTE
OTTAWA NAE-AN-17
NOVEMBER 1983 NRC NO. 22831

W. Wallace, Head/Chef
Stiuctures and Materials Laboratory/ G.M. Lindberg
Laboratoire des structures et mathriaux Director/Directeur



SUMMARY

-/An outline of Nisitani's body force method is presented and
details of the numerical implementation provided. Full details are provided
for the solution of several problems including single cracks or single elliptical
notches in semi-infinite plates as well as the problem of an embedded crack
near a semi-elliptical notch in a semi-infinite plate.

RESUMi

Une description de la ni~thode des forces de Nisitani avec des
exemples num~riques est pr6sentie dans cette note. Les exemples de
resolution de probl~mes sont tr~s d~taill~s et comprennent notamment des
problimes de fuissres uniques ou d'entailles elliptiques uniques dans des
plaques semi-infinies ainsi que le probl~me d'une fissure situ~e i proximit6
d'une entaille semi-efliptique dans une plaque semi-infinie.
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IMPLEMENTATION OF NISITANI'S BODY FORCE METHOD

FOR THE SOLUTION OF NOTCH PROBLEMS

1.0 INTRODUCTION

Efficient use of fracture mechanics methods for damage tolerance assessments depends upon
knowledge of the stress intensity factor for the flaw considered. While these are available for some
simple crack geometries, it is often necessary either to resort to some approximation or employ a
complex finite element program to obtain the information. Alternatively, a boundary integral
approach may be used which may in some cases be more efficient.

One such approach is the body force method proposed by Nisitani 1 . This is a relatively
straightforward technique in principle which makes use of the stress field derived from point forces
acting in an infinite plate or body. Boundary conditions are satisfied by applying body forces
(continuously embedded point forces) along the edges of notches or cracks (the density of these body
forces being determined from the boundary conditions). The method is applicable to both two and
three dimensional problems.

In attempting to use this method following the work of Nisitani, it was found that certain
details of the technique were absent or available only in the Japanese literature, and it therefore seems
appropriate that, having implemented the method at NRC, the details of the implementation be
reported. Thus for the particular problems studied, all the relevant information from various papers of
Nisitani have been brought together and all the details necessary for implementation are given in
this report. An additional reportill is available on request which contains listings of the computer
programs developed with appropriate documentation.

2.0 PRINCIPLES OF BODY FORCE METHOD

In order to make this report more complete, a brief review of the principles of the body
force method will be presented. The review follows that of Nisitani I I but various points which were
found difficult to follow have been amplified while others which were considered to be unnecessary

* for a general understanding of the method have been omitted.

2.1 Tension of Infinite Plate with an Elliptic Hole

Consider the problem of an elliptical hole in an infinite plate as shown in Figure 1. If a
stress, a-, is applied at infinity, the x and y components of the displacement, u and v, at an
arbitrary point Q~, i?) on the edge of the hole are independent of the Poisson's ratio, v, and are given
byI3 ]:

E

and V a -j"i (1b)

where E is the Young's modulus and b and a are the semi-major and semi-minor widths respectively
of the ellipse.
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Now consider an elliptical plate of the same size and shape as the hole. For the
displacements on the edge of this plate to be the same as for the edge of the hole, the strain
components at an arbitrary point on the plate must be

au a.
6x3 =  (1 + 2b/a) (2a)

_av _ -
ey =  - = -- (2b)al E

and 7xy = 0 (2c)

where e and y are the normal and shear strains respectively. From Hooke's law, the normal and shear
stress, a and T, corresponding to these strains are

E OX
ox f (ex+vey) = -(1+2b/a-v) (3a)

1 -p 2  1-2

E - X
ay = -(ey+vex) P (1 v(1+2b/a)) (3b)

1- 2  1v 2

xy, Gxy = 0 (3c)

The elliptical plate having these surface stresses can be inserted exactly into the infinite plate with
the elliptical hole subjected to a stress a,, producing an infinite plate with no hole. Therefore the
problem of an infinite plate with a hole is equivalent to the problem of an infinite plate with no hole,
but having the stresses given by Equations (3) applied along the imaginary boundary of the ellipse as
shown in Figure 2. These stresses are obtained from a series of continuously embedded point forces
along the boundary.

The densities, Px and py, of these body forces in the x and y directions can be obtained
from Equations (3) as

O'x

Px = -(1 +2b/a - ) (4a)

1 - P
2

where 'unit length' is measured in y direction for P, and in x direction for py.

q -'%~ q 0 
e% '
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Since v does not affect the end results according to Nisitani'1 1 , it may be set to zero and the body
forces written

P" = 07 (1 + 2b/a) (5a)

and py = - a. (5b)

Thus for an elliptical hole in an infinite plate the densities of body force are constant along the
boundary of the hole. In general, however, they will not be constant and a numerical technique must
be used to determine them.

2.2 Tension of Infinite Plate with a Crack

The case of an infinite plate with a crack under tension is shown in Figure 3. A crack can
be considered as an extremely slender elliptical hole. As b/a tends to infinity, the hole becomes
a crack and the points at which body forces are applied come closer to each other. Thus the
fundamental stress field is obtained from a pair of point forces equal in magnitude and opposite in
direction.

To find the stress at an arbitrary point (x, y) due to a pair of point forces separated by a
distance 6 from each other, consider Figure 4. The stress at (x,y) in the x direction due to the body
forces X acting on the element dil may be written

x = X UAX (o xy)I

x U ,7XY (6)
X IX=l

where Ox is the stress in the x direction at (x,y) due to a unit body force in the x-direction at
(,). This may be written

X=l

a X (Xs) (7)

ax 
I

But the point force X can be written

X p px di (8)

: ~~~~~' - .. ..- -. ,' % " .;,.,.' ... ' ...-'-.' -.-... ,... .'-.. 3"- .
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and for the very slender ellipse (i.e. small t)

6 = 2t (9)

Therefore, substituting Equations (8) and (9) into (7)

aou'

Ox fi(p, d11 2t)

or dox =lim noxd11) -U- 2t

0o x 1

=- Px2t d11 (10)

~t = 0

But for an ellipse

2 _ .2 _

a2  b 2

* a

or = -b 2- 72  (11)
b

and from Equation (5a)

px = ax (1 + 2b/a) (5a)

Thus substituting Equations (5a) and (11) in (10)

dax = -X 4 a,- N/P - n2 d77 (12)
X=1

From the fundamental stress field for a point force acting in an infinite plate (see Appendix 1)

x - (z - t) (3 (x - t)2 + (y 1)2 ) (3
ax X (13)

47 ((x - t)2 + (y 1 1)2 )2

4 K ' :2X~~~b: ,'," ',.'. ', :,.;',;'+.5 *5 ". * 5 ..- . 5' * ''": ".:."-". ",.".•,:. .
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au'X  _3 4 +6X 2 (y n)2 + (y_17)4

therefore x-3%4 + (14)
atX=I 4r(x+(y-n2)

t=0

To determine the stress at an arbitrary point (O,y) on the y axis (i.e. on the crack line)

Equation (12) must be integrated and added to the uniform stress at infinity Ux, i.e.

(- 3x 4 + 6X2 (y - 17)2 + (y - ??)4) ° +o °

Ox) (4 ' +(15)
.,, 4 v ( x 2  + ( y ,r1 ) 2 )3

When IyI > b, i.e. beyond the crack, x may be set to zero directly and Equation (15) may
be written

b

°x (Y 7 f b- 72 dn + ax

?:;! rI (y I)

-b

- ' 2r b ~/_b

in- 1 2 +b2 o

,

K1ror a(y) = ,--- (17)

2/2

;'L~t where K1 is the mode 1 stress intensity factor

For I y I < b and x = 0, the integral contains a singularity at y = 1, so principal values
- must be taken to evaluate it. Denoting the integrand as f(i?), Equation (15) may be written

a..

*-4 .. ... . .S-. -," -..,..'.",',,,,.-', ,,',5 .'.... ...,.* ",'.. -'-, a . .. ',-,,'.'." .. " -'. ." .".". . ,.. , .* ,",".
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0, o (y) lir b () dt + u-

X.O f
-b

Ye b

mlir f f(lr) dtj + f f(?) di

+ lim f (,q) di? + ox  (18)
X-e

The first two integrals contain no singularities and may be integrated directly by setting x = 0. The
result is 1 ] for [e I c b:

lir y f(Q)d + f f(i)d = [F (y-e) - F(-b) + F(b) - F(y+e)]

y+e

.-- --y U 
(19)iI

in which F(77) .... dl
, r (y _ Tq)2

-sini )

+ y In (b 2 -yj)+ v(b 2 -y 2)(b 2 -2) (20)_y2 b(y - i1) (0

The third integral contains a singularity when x - 0, so it is not permissible to set x = 0
before performing the integration. The integration must be performed first before the limit is taken.

For e -4 b, vr/ -n may be approximated by V y2 which may then be taken outside the
integral. Then setting t - y - "

= k ,, , .:€ . = . ..-.-,:\ , 4. 4,, , , , -= ;. ...j . . ... , . ........* . :. .. . . . ... .- - -



lim f f(n) dn z- ir -T y2d

x-O x-O (x 2 + t 2 )3  d

y-E -

- 2u e67

2u,- e2x 2eJ im - I~ y2 I -
x-O X2 +C2 (X2 + e2)2.

2x-

%" °x -b2 _ y2 (21)
"(21

Substituting Equations (19) and (21) into (18) yields the result

Ox (Y) = 0 for IyI < b (22)

Equations (22) and (17) show that the problem of an infinite plate with a crack can be
reduced to that of an infinite plate without a crack but subjected to body forces along the imaginary
crack line. The stresses at an arbitrary point are obtained by integrating the stress field for a pair of
point forces.

It is also clear from examination of Equation (20) that the same result would be obtained
by ignoring the singularity, and in fact no special consideration is necessary when integrating these
expressions analytically.

The strength, dR, of a pair of point forces has been expressed as the product of the
magnitude of the forces, X, and the distance between them, 6,

i.e. dR - X6

or, from Equations (8) and (9)

dR = p~dn2ef

Then the density of a pair of point forces, dR/dl, is obtained as

dRdR - (p,2t) 
(22)

which for a crack in an infinite plate may be written using Equations (5a) and (11) as

dR

. . a.- ' s/. - ( 2 3 )
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However, for convenience, Nisitani1 1 ' , has defined a quantity, y, which for the crack in
the infinite plate is given by

= 1 dR (24)':l y = 4V- " -(24

4./b2 .n dij

and which he calls the density of a pair of body forces.

(The reason for using this quantity, rather than dR/dl directly, is that the variation in y along the
crack line for general problems will then be small, and so setting y = constant within an interval will
result in an accurate solution).

Comparing Equations (23) and (24), for the crack in an infinite plate, -f is constant and equal to o.
Thus from Equation (17)

K1 = v'rb (25)

For other crack problems, the densities of pairs of body forces -y will not be constant, but will vary
along the crack. For these problems a numerical method must be used to determine the densities of
body forces at the tips of the cracks 7A and yB. From these the stress intensity factors KIA and Ke
at each tip can be calculated according to Nisitani I as

KIA = IAVf

(26)

N KIB YBN

3.0 NUMERICAL TECHNIQUE

3.1 Crack in a Semi-infinite Plate

3.1.1 Formulation

Consider the case of a crack in a semi-infinite plate under tension as shown in Figure 5.
Whereas in an infinite plate the densities of pairs of body forces, y, were constant along the crack,
here the densities vary continuously.

If the crack is divided into MM equal intervals and - is set constant within each interval, a
stepped distribution will result which will be accurate for large values of MM. The derivative of the
stress field due to a point force in a semi-infinite plate is used to determine the stresses at the mid-
point of each interval due to the body forces and the boundary conditions that the mid-point of each
interval be free of stress are applied. The densities of the pair of body forces in each interval can then
be determined.

The stress intensity factors at both tips of the crack can be calculated using only the
densities 7 1 and -MM at the ends of the crack. The stresses at an arbitrary point on the plate can be
found by taking a linear combination of the body force densities.

-. 4. - = . "" " -" ", -*- -% "-""%, '%. '" " '"""" -"" - "", - -"""' " . . '% ". -" ' ' '. ." '
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3.1.2 Solution Sequence

(1) The crack AB is divided into MM intervals, with the end points of the N-th intervals having
values of qi of

7N1i e -b +2(N-1)b/MM

'?N e-b + 2Nb/MM

where b is the half length of the crack and e the distance from the centre of the crack
to the edge of the plate as shown in Figure 5. The mid-point of the M-th interval has a
co-ordinate, y of

YM = e -b + (2M -1)b/MM

(2) The influence coefficient OYN which is the stress at the mid-point of the M-th interval duexM'
to a pair of body forces on the N-th interval having a density 'YN = 1, is given by

N =- 4/b 2 - (n - e)2 d7

N-th X=1
interval

Using the fundamental stress field for a point force acting in a semi-infinite plate
[Appendix 11 this may be written

-rN = 7?N 12y1 1
xM = - + . .... / b2 -( 7 -e 12 d7

f () (y+ )2  (y+ )3  (y+ )4  
iT

-N I

This integral can be solved either analytically (see 3.1.3 and 3.1.5) or numerically, with the
singularity treated in the same manner as for the infinite plate.

(3) The boundary conditions are applied to make the mid-point of each interval free of
stress, i.e.

MMZy N +NGX = 0 for M = 1,2 ... MM

N=I

This results in a system of MM linear equations in MM unknowns, yN, which can be solved
using a matrix inversion routine.

a.

1%

'- . "7-,. , ,.m .- . -. .1 1 -,.,. -. .-.. ,. -',, ! ," , .-- " *" " '*.." *,** ''" -. " t' " . . .- .. .
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(4) The stress intensity factors KIA and KIB are then calculated from -Y, and yMM as

KIA = -1/w and KIB f MM-v/=r

(5) The stress at an arbitrary point P on the plate can be calculated from the influence
4 coefficients for that point and the body force densities, i.e.

~M M

a' Ix "N aP + 0Y

N=1

(6) For finite values of MM there will be errors in KIA and KIB because of the approximation
* of a stepped distribution. The true values of K1 A and K1 B correspond to MM = -. Since

Nisitani has shown the error to be proportional to 1/MM these values can be obtained by
extrapolation from two values of MM such as 12 and 24.

3.1.3 Analytic Integration

The integral in 3.1.2 in the calculation of orxN was performed analytically. The result is
shown in Appendix 2. Although the integral involves a singular term in the case where M = N, no

*" special consideration is required as illustrated earlier.

3.1.4 Results (Analytic Integration)

Table I compares the correction factors, FlA, obtained in the present investigation with
those of Nisitani1 1 for various values of the number of intervals MM, for a crack with a b/e ratio

'j of 0.5.

*, TABLE I

CRACK IN SEMI-INFINITE PLATE

MM FIA (this work) FIA (Nisitani)

12 1.090367 1.09033 b/e = 0.5
16 1.090622 1.09063
24 1.090919 1.09091 KIA

32 1.091024 1.09104 FIA =

48 1.091243 1.09115 o-V

The agreement is very good and the minor discrepancies can be attributed to computer differences.

The correction factor FIA is plotted against 1/MM in Figure 6. The error in FIA is almost
linear with respect to 1/MM, with the value of F1A tending to 1.09149 as MM tends to infinity. Thiscompares with the value of 1.0914 obtained by Nisitani[' 1 .

....................................... , -... ......•........... ....... .....-.... ..................................-.............. -.. -.. -.f-6
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3.1.5 Numerical Integration
For most problems, the integral for the influence coefficients cannot be integrated

analytically as in 3.1.3 and the integration must be performed numericlY. To check on suitable
parameters for these integrations, the integral of 3.1.2 used to evaluate olm was also solved using a

numerical integration routine.

When evaluating the influence coefficients for M = N, i.e. the stresses at interval M due to
unit body forces in the same interval, there is a singularity which must be taken into consideration
when using numerical integration. The integrals either side of the singularity are evaluated in the
normal manner and the integrand is approximated in the area of the singularity as follows:

F~ii - - y+e +-__ ___

I f" 1 1 12y 1y

F y = L- + /1b2 - (1j- e)2 dii
iy )2 (y + 1) 2  (y + n)3 (y + 77)4

y-f

For small e this becomes

y+e

F Fi?) J V/b2 - (n -e) 2 diiF (1) - __ (y _ ?)2

y-e

Also for small e, 1 _ y

y+E1 (y-e_____--_--_ d_
F(ni) - - vb 2 -(y-ey di

y-e

- - v/b2 - (y - e)2
Ire

Thus the total integral over an interval [1iN -1 iiN I which contains a singularity can be evaluated
numerically as the sum of three integrals over three sub-intervals, the outer two being performed
using a standard numerical integration routine, while the middle one is a simple analytic expression.

3.1.6 Influence of Integration Parameters and Computer Precision

The influence coefficients which involved the singularities, a.&M were found to be affected
by the choice of e in the numerical integration. The error was linear with respect to c, however, as
shown in Table II, so extrapolation of the true value o7M was straightforward.

xM

The integration parameter e was always calculated as a linear function of the fraction of
the interval (FRAC) which is to be evaluated analytically around the singularity. In this way, as the
intervals become smaller (as MM is increased) the value of e shrinks accordingly without any change
to FRAC.

..... ....... .................................................................................... ., -
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TABLE II

INFLUENCE OF e ON ERROR IN all
XI

FRAC eERROR IN ax~

0.020 0.0020 0.00748
0.018 0.0018 0.00673
0.1..01 .09

0.014 0.0014 0.00529

0.012 0.0012 0.00451

0.010 0.0010 0.00377
0.008 0.0008 0.00304
0.006 0.0006 0.00230
0.004 0.0004 0.00160
0.002 0.0002 0.00095

Results for crack in infinite plate in the interval [1.0, 1.21
e = 2.0; b = 1.0; y = 1.1; MM =10; e FRAC -b/MM

The correction factors F IA and FIB where

F1 =

I and stress intensity factors were also found to vary linearly with respect to e, so for a given MM,

three or four values of e were used in the numerical integration and the true values were extrapolated
using linear regression.

The number of digits of precision specified for real program variables in the computer
A calculations was found to have a great effect on the results. For the NRC IBM 360 system, a 'single

precision' real variable has six digits of precision, while a 'double precision' variable has fourteen. For
these calculations it was necessary to specify double precision for all real variables.

The primary reason for this is that for small values of e, several digits of precision are lost
* in the integration over intervals containing the singularities. When evaluating the integral over the

three sub-intervals, the outer ones produced large positive numbers, while the centre produced a
large negative number. When the three were added, the result was a number close to zero. Thus in the
addition three or more digits of precision were lost.

3.1.7 Influence of Number of Intervals

V Figure 7 shows that the error in the correction factor or stress intensity factor was linear
.4 ~with respect to 1/MM, and true values were therefore obtained by extrapolation to MM o.
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3.1.8 Results (Numerical Integration)

Table Ill compares the results obtained by numerical integration with those obtained
analytically for various values of MM. The agreement is good and discrepancies can be attributed to
approximation errors in the integration routine.

""-, TABLE III

COMPARISON OF FIA OBTAINED BY NUMERICAL AND ANALYTIC

INTEGRATIONS FOR CRACK IN SEMI-INFINITE PLATE

_ _ FRAC (EXTRAPOLATED) ANALYTIC

0.03 0.02 0.01 0.00 INTEGRATION

12 1.096155 1.094206 1.092265 1.090319 1.090367

16 1.096337 1.094411 1.092468 1.090536 1.090622

24 1.096515 1.094635 1.092756 1.090876 1.090919

32 1.096554 1.094688 1.092795 1.090920 1.091024

48 1.096608 1.094777 1.092938 1.091104 1.091243

b/e - 0.5 e f FRAC • b/MM

The correction factor FIA as e tends to zero is plotted against 1/MM in Figure 7. Once
again, the error in FIA is nearly linear against 1/MM and the value tends to 1.091352 compared
with a value of 1.091490 using analytic integration and 1.0914 obtained by Nisitani[ !.

3.2 Edge Crack in a Semi-infinite Plate

3.2.1 Formulation

The case of a crack at the edge of a plate as in Figure 8 is similar to the case of an embedded
crack. The edge of the plate is placed at the centre of the crack, so that the distance, e, from the edge

to the centre of the crack is zero.

3.2.2 Results (Numerical Integration)

Table IV shows the correction factor FIB for various values of the number of intervals,
MM, and the integration parameter, FRAC, together with the extrapolated values for FRAC = 0.

The correction factor FIB is plotted against 1/MM in Figure 9. The error in FIB is almost
linear in 1/MM with the value tending to 1.1213 as MM tends to infinity. This compares with a value
of 1.121 given by Nisitani' 1 .

• .~~ ~~. - . . ..-. -. .*- . ... .- ..-... " .'-.. -
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TABLE IV

COMPARISON OF FIB FOR EDGE CRACK IN SEMI-INFINITE PLATE

AT VARIOUS VALUES OF MM

_FIB

8 12 16 24

0.03 1.096820 1.098911 1.099955 1.101096

0.02 1.101942 1.104243 1.105375 1.106618

0.01 1.107365 1.109990 1.111269 1.112726

0.00 1.112587 1.115460 1.116847 1.118443
(EXTRAPOLATED)

KIs
e = FRAC -b/2MM F IB = _ r_

3.3 Elliptical Hole in an Infinite Plate

The numerical solution of problems involving holes is a little more complex than for cracks.

It was therefore decided to first try the simple problem of an elliptical hole in an infinite plate since

the body force densities are known and constant in this case, and this allows an intermediate check of
the program.

3.3.1 Formulation

The elliptical hole shown in Figure 1 is divided into MM equal intervals and the body force
densities, p, and py are set constant within each interval. The influence coefficients are calculated
from the stress field for a point force in an infinite plate and the boundary conditions that the mid-
point of each interval be free from stress are applied to determine the body force densities. The stress
concentration factors and the stresses at an arbitrary point on the plate can be found from a linear
combination of the body force densities.

3.3.2 Solution Sequence

* (1) The ellipse is divided into MM equal intervals, using the elliptic parameter p used in the
equations of an ellipse:

= acosp ; i f= bsin p

The values of p at the end points of the N-th interval are

0_N -I r/2 + 2 (N- 1) /MM

and PN  -r/2 + 2Nn/MM

... . - • , o . . ' ,• • . . . . . . . . o - . .. . .
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The value of p at the mid-point of the N-th interval is

w= -i/2 + (2N-1)r/MM

The x and y values of the mid-point of the N-th interval are

x = acos (-w/2 + (2N-1) I/MM)

y = b sin (-wr/2 + (2N- 1)r/MM)

(2 XN YN XN YN XN YN

(2) The influence coefficients, axM ; UxM' 0 yM' 0 yM' XYM " TxYM which are the stresses at
the mid-point of the M-th interval due to a body force on the N-th interval having densities
Px = 1 or py = 1 are given in Appendix 3.

In the program listed in Reference 2, the influcnce coefficients for each point on the ellipse
have been calculated. However, because of symmetry about the x and y axes the influence
coefficients need only be calculated for one quarter of the ellipse, although for that quarter,
all the influence coefficients must be calculated, i.e. the effects 'of body' forces around
the total ellipse must be calculated.

(3) The boundary conditions to make the mid-point of each interval free from stresses are
applied; i.e.

MM

PxN (aXN COS 0 + rXN sin 0)E XMxyM

N=1

MM

PyN(OxMN COS 0 xyM Sin 0) + a- cosO0

N=I

and

MM

XN XN
xN syM COS 0)

N=l

MM

+ PyN (a YM sin0 + xYM cos 0) =0 (M: 1 MM)

N-I

where PXN, PyN are the body force densities of the N-th interval, o is the stress at

infinity and 0 M is the angle between the x axis and the normal to the ellipse at the mid-
point of the M-th interval; i.e.

.•,-
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M = arctan ±tan

where pM is the value of p at the mid-point of the M-th interval.

This results in a system of 2MM linear equations in 2MM unknowns PxN, PyN.

(4) The stresses at any point P in the plate are calculated from the influence coefficients at
that point and the body force densities; i.e.

MM

Ox = P xN + xp PyN) +

N=1

MM

y yP PxN + yP PYN)

N=1

MM

Tx 2 (TxyP PxN + xyP PyN)

N=1

(5) The stress concentration factors KTA, KTB are then calculated:

KTA = ax (at A)/o x

KTB = ax (at B)/a-

(6) Because the body force densities are constant around the ellipse, there will be no error due

to the choice of the number of intervals MM. Therefore the value of the stress concentration
factor will be the same regardless of the number of intervals.

3.3.3 Numerical Integration

In the numerical integration, the stress field equations have a singularity at y = 17 and
x = , i.e. when the stresses are evaluated at the mid-point (x,y) of an interval due to a point force
X or Y on the same interval. Integration is straightforward over all other intervals.

sii In order to integrate over the singularity, principal values of the integral are taken by

splitting the integral in three disjoint subintervals

[ 0~~1 N-I' MID -10]; [ 0M1 v - 6, MIv + ']; [ PM! D "+ PN S

where x = a cosP PMID; y b sin MID

-€ o -- ' d ', '- # ''" " " ""'' € '. '""-"• . - '."- . -''-*.c*'--''- . , . , -'' *. . - .- , ' " ,- . ., , , ; -, . ..- - .. . . , .-.-. ' . ... , -. , , . . . . . . . . . . , . ,
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The integrals F1 ( p) and F3 ( p) over the 1st and 3rd subintervals are straightforward because
the singularity occurs in F 2 over the 2nd subinterval.

If e is small relative to the length of the interval [PN -I, ], F2 (P) can be approximated
by a function which contains no singularity (see Appendix 4).

For this same M-th interval when x = and y = 77, the stresses Aux, Aa y , Au x , AoY
6,xy, Txy which are the stresses at a point infinitesimally close to the ellipse subjected to a body
force must be added to XM YM , uXM YM, X rYM

xM IxMI yM' yM' xyM' xyM respectively.

It can be shown (Appendix 5) that these additional stresses are

Aux -- (5 + 4 cos 20 - cos 40)
IPX

=  16

x=  -1 -os0

Arx _ 1 (2 sin 20 - sin 40)Ipx 16

and

1

A Y I =_- 1 (5 - 4 cos 20 - cos 40)
y Py=l 16

Ar Yy { =-- (2 sin 20 + sin 40)Iy Y= 16

where 0 is the angle between the x axis and the normal to the ellipse at the mid-point of the M-th

interval.

3.3.4 Results

Table V shows the body force densities p. and py for each interval of a circular ellipse in
an infinite plate.

The results are identical to those predicted by the theory in Section 2.1. The body force
densities are constant around the ellipse and agree with equations

X Ox (1+ 2 b/a) =3a'= 3

y= - 1

., ..... ... ., . ... ......... ... . .. ...... ,-,.. . .. _., . . . .. .
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.1*. TABLE V

BODY FORCE DENSITIES FOR CIRCLE IN INFINITE PLATE

Interval P, Py

1 3.000000 -1.000000
2 3.000000 -1.000000

3 3.000000 -1.000000

4 3.000000 -1.000000

5 3.000000 -1.000000
6 3.000000 -1.000000

7 3.000000 -1.000000

8 3.000000 -1.000000

MM =8; FRAC = 0.02; e = FRAC ir/MM
a = 1.0; b = 1.0; o = 1.0

3.4 Elliptic and Semi-elliptic Hole in a Semi-infinite Plate

3.4.1 Formulation

For the case of an ellipse or a semi-ellipse in a semi-infinite plate, Figure 10, the densities
of body force p,, and py are no longer constant as in the case of the ellipse in an infinite plate.
Instead the densities are continuously varying around the edge of the hole.

., If the elliptic hole is partitioned into MM intervals and px, py are set constant within each
interval, the continuously varying densities will be replaced by a stepped distribution which will be
accurate for large values of MM.

The stress field due to a point f 'rce in a semi-infinite plate is used to evaluate the stresses
at the mid-point of each interval. The bot ry conditions that the mid-point of each interval be free
from stresses are applied and the values of the body force densities can then be evaluated.

The stresses at an arbitrary point in the plate and the stress concentration factor (SCF) at
the top or bottom of the semi-ellipse or ellipse can be calculated by taking a linear combination of
the body force densities.

Due to the symmetry of the ellipse or semi-ellipse about the y-axis, only half of the
influence coefficients need to be calculated although, as before, they must be evaluated for body
forces around the total ellipse.

3.4.2 Solution Sequence

(1) The ellipse or semi-ellipse in a semi-infinite plate is divided into MM intervals. For the
'ellipse, the values of the elliptic parameter p at the end points of the N-th interval are

- f -w/2 + 2(N- 1)/MM

pN i/2 + 2N r/MM

4l ' , >:, , :. , , . . . . . . . . • . .. .. , , .- , . . .. . ... .. . , . . ,. , . .A.' ,. ,. , , ,,,

-- ~ ~p %~9* . ... . -" e ,"'=, t., ' t ,A, A -
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The x and y values of the mid-point of the N-th interval are

x = acos (-r/2 + (2N-1)vr/MM)

y = bsin (-ir/2 + (2N-1) r/MM)

For the semi-ellipse, the values of p at the end points of the N-th interval are

PN_ = (N-1)ir/MM

'PN = Nw/MM

The x and y values of the mid-point of the N-th interval are

x = acos((N-0.5)r/MM)

y = b sin ((N- 0.5)r/MM)

XN YN XN YN XN YN
(2) The influence coefficients OxM, 0 xM, oyM' ,yM , xyM, TxyM, which are the stresses at the

mid-point of the M-th interval due to a body force on the N-tb interval Y in a semi-infinite
plate having density p, = 1 or py = 1 are given in Appendix 3.

(3) The remainder of the solution sequence is identical to that for an ellipse in an infinite plate.

3.4.3 Influence of the Integration Parameter

The method of numerical integration is identical to that for an ellipse in an infinite plate.
However, for a semi-infinite plate the influence coefficients which involve singularities and hence
the stress concentration factors are affected by the choice of the value of e in the numerical
integrations.

Table VI shows the stress concentration factors obtained for various values of the
integration parameter e for a semi-ellipse with b/a = 2.0 in a semi-infinite plate.

TABLE VI

EFFECT OF e ON SCF FOR SEMI-ELLIPSE

IN SEMI-INFINITE PLATE

FRAC SCF

0.010 5.187062

0.008 5.185324

0.005 5.182725

0.001 5.179275

extrapolated to 0 5.1784

MM 16; a 1, b =2, e 0, e - FRAC • /MM

.-. : ... ... ...... -,4'.. , *.,:
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In Figure 11 the SCF is plotted against e. The error in the SCF is almost linear in e, and

tends to 5.1784 as e tends to zero.
'I

Because of the linearity of the error in the SCF, it is only necessary to obtain two or three

values of the SCF for different values of e and extrapolate to obtain the value of SCF for f = 0.

Another method of approximating the true SCF for a given number of cuts is to choose eo small
enough that the difference between the value of the SCF at E = 0 and the value at co is negligible.

3.4.4 Results

Tables VII and VIII compare the results obtained for a semicircular notch, and an ellipse
with b/a = 2.0 and e = 0.5, with those of Nisitani' 1 4 1 for several values of the number of intervals
MM. The agreement is excellent. Discrepancies can be explained by the fact that the integration
parameter e is taken to be very small, but no extrapolation has been done to determine the true
value at e = 0. This was done to reduce the amount of computer time used.

TABLE VII

STRESS CONCENTRATION FACTORS FOR A

SEMICIRCLE IN A SEMI-INFINITE PLATE

KTBPresent Results Nisitani [4

16 3.053872 3.0527

24 3.057044 3.05595

32 3.059274 3.05908

48 3.061416 3.06123

a 1; b = 1; FRAC =0.001

TABLE VIII

STRESS CONCENTRATION FACTORS FOR AN

ELLIPSE IN A SEMI-INFINITE PLATE

KTA Present Results Nisitani[ '

16 5.696703 -

- 24 5.715367 5.7147
32 5.724825 5.7243

48 5.734337 5.7340

- a =1; b =2; e =0.5; FRAC =0.001

.

m. .. . .. . . . .. . . . . . . . .. . . . . . . .
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Figures 12 and 13 show KTA and KTB as a function of 1/MM. The error in the KT'S is
almost linear in 1/MM. For the semicircle on the edge of the plate, KTB tends to 3.0650 as MM tends
to infinity, compared with a value of 3.0654 obtained by Nisitani 14 l and 3.0653 by Isida'5 1 . For the
ellipse (b/a = 2.0, e = 0.5) KTA tends to 5.7531 as MM tends to o, compared with a value of 5.753
obtained by Nisitani.

3.5 Combination of a Crack and an Elliptical Hole in a Semi-infinite Plate

3.5.1 Formulation

Figure 14 shows the case of a crack and an elliptic edge notch in a semi-infinite plate. As
before, the semi-ellipse is divided into M1 equal intervals and the crack into M2 equal intervals, with
the body force densities set constant within each interval. The stress field due to a point force in a
semi-infinite plate and its derivatives are used to calculate the stresses at the mid-point of each interval
on both the crack and the semi-ellipse due to the body forces on both, and the conditions to make
the mid-point of each interval free of stress are applied. The body force densities can then be
determined as before.

3.5.2 Solution Sequence

(1) The semi-ellipse is divided into M1 equal intervals. The end points of the N-th interval
have p values

'PN-1 = (N-1)r/M1

ft= Nv/MI

where p is the elliptic parameter such that

= acos p; 7? = bsin p

The x and y values of the mid-point of the M-th interval are

x = a cos ((M- 0.5)/M1)

y = b sin ((M- 0.5)r/M1)

The crack is divided into M2 equal intervals. The end points of the N-th interval have values
on the y axis

TIN-1 = e-c + 2(N-1)c/M2

IN = e-c + 2NcIM2

where e is the distance from the edge of the plate to the centre of the crack, and c is half
the length of the crack.

9 * *. 9 *-
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The mid-point of the M-th interval has a value

y = e-c + (2M-1)c/M2

(2) The influence coefficients

'

XN XN YN YN XN YN
axMe' yMe' OxMe' 0 yMe' TxyMe' 7xyMe

.'yN -yN 7-yN

xMe' OyMe' TxyMe

XN YN

U XMC' UxMc

and 07N0
xMc

are given in the appendices.

The first six coefficients are the stresses at the mid-point of the M-th interval on the ellipse
due to point forces on the N-th interval of the ellipse having densities p. = 1 or py = 1
(see Appendix 3).

The seventh to ninth coefficients are the stresses at the mid-point of the M-th interval on
the ellipse due to a pair of point forces in the N-th interval of the crack having density
- = 1 (see Appendix 6).

The 10th and 11th coefficients are the stresses at the mid-point of the M-th interval on the
crack due to point forces on the N-th interval of the ellipse (see Appendices 3 and 6).

The 12th coefficient is the stress at the mid-point of the M-th interval on the crack due to
a pair of point forces on the N-th interval of the crack (see Appendix 2).

(3) The boundary conditions that the mid-point of each interval on the ellipse and crack be
free from stress are applied:

[""" XN 0+XN in0+ YN YNsi0

~2[xN (XCcos 0 + T ~e sin o)+ PyN (oeCos 0+ Tx~ sin 0)

N= 1

-.40,cxN xMe xye xen +a Cos 0 + 0

*o-°-
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MI

sxN ( +y 0 Cos + PyN sin0 + cos

N=1

" M2
M2 (oN sinO+ N sO =0

N xyMe COS - 0

N=1

, MI M2

XNE+XN c XNYP N 1 + YN xFc + O: = 0"-P xN xM c M

N=1 N=1

The result is a system of (2M1 + M2) linear equations in (2M1 + M2) unknowns p,,, py

and -.

3.5.3 Numerical Integration

In the numerical integration of the influence coefficients, singularities occurred in the
evaluation of the first six coefficients discussed in 3.5.2, and in the 12th. The procedure for handling
the first six coefficients is discussed in 3.3.3, while the procedure for the 12th coefficient is discussed
in 3.1.5. However, it is not necessary to evaluate the 12th coefficient numerically. As seen in 3.1.3
(for a crack of length 2c) or 3.2.1 (for a crack at the edge of a semi-ellipse) the 12th coefficient can
be evaluated analytically.

3.5.4 Results

The values of the correction factors at both tips of a crack in a semi-infinite plate having a
semi-elliptical notch are given for various values of the number of intervals M1 and M2 in Table IX.

TABLE IX

CORRECTION FACTORS FOR A CRACK NEXT TO A

SEMI-ELLIPTICAL NOTCH IN SEMI-INFINITE PLATE

No. of Intervals Correction Factors

M1 M2 FIA FIB

16 16 2.201207 1.935246

24 24 2.211444 1.938788

32 32 2.217546 1.940605

48 48 2.222124 1.941886

c = 100.0; p = 1000.0; c/p = 0.1
a 000.0; b = 1000.0; b/a = 1.0

c/h 0.4; FRAC = 0.05; e = FRAC i/MM

I0- 
.

.1.
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' The correction factors are plotted against 1/(M1 + M2) in Figure 15 and again the error is almost

linear in 1/(M1 + M2). The extrapolated values as M1 + M2 tend to infinity are 2.2329 for FIA and

1.9454 for FIB compared with the values of 2.232 and 1.944 obtained by Nisitani'1 1 .

4.0 SUMMARY AND CONCLUSIONS

An outline of Nisitani's body force method has been presented and several problems have
been solved using the technique. The problems include single embedded cracks and edge cracks and
single elliptical and semi-elliptical notches in semi-infinite plates, as well as the problem of an
embedded crack near a semi-elliptical notch in a semi-infinite plate. Results agree very well with those

*' of Nisitani and solution times are relatively short.

Details of the numerical technique have been presented, including a brief discussion of the
computer precision required and the method for integrating over the singularities. In addition, all the
analytical details for each problem have been presented, gathering together information from several
of Nisitani's papers, many of which are in Japanese.

Full details of the computer programs are provided in a separate report.
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APPENDIX 1: FUNDAMENTAL STRESS FIELDS
"-.4

For plane stress, the stress fields at (x,y) for point forces X and Y acting at (,7) are"I:

xO FQ (3+V)q2 + (I-V)M2 I X

u= FV 1(1 - V2- (1 + 3v)M2) X

rx Fm1(3 +V)Q2 + (1 v)m2 X

and

oX = Fm{(1-v)2 - (l+v)m2} x

-yFm (1 +-3)2 + (1+v)M21 Y

xy

," [F 1(3 + V)22 + (1- v)M21 - G Q1(3+v)92 + (1 v)n2

G, 1(1 - )(Q5 + 2(n 2 -n)9 3 + n2 (n2 - 2n))

OX [Fq(j - -)n2 - (1 + 3P4M2I+ GQ1(1 - V)m2 - (14 3V)n2

Yy

-G]( -P) (95 + 2(n2 + n)23 + n2 (n2 + 2n)k)

S+ (1 + (2F(-n' +2n - 1) 2 (2n3 + 2 )2

'2n - nt, and

QI~Q*
I
tP'" OX .. .. F ((3 + "),2 + (1 - )m21 G12 1(3 + p")2+ (1 1")n2 j

+

Ii {11)'+(2-)3+2n-n'
% *.. -. *.~*. + (1 +~ ,*d) (- (n

2  -. d1) .+ n
2 
(- .*+8 -~ 6)£)} * X . * -- -

4 y F ("1)2 I 3.)2 I ( -', - 4 (1 + 314 *n
2

.
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- 'and

G= Fm I(1 + 3v)Q2 - (1- V)m2 1 + Gin j(1 + 3V)Q2 - (1 - V)n2Ox

-G2 (11 - ,) (( + 1)94 + 2n' 22 + n3 W - n))

+ (1 + v) (20 + n (2n 2 + 6n - 6)22 + n3 (2n 2 - 4n + 2)) Y

Y FM 1(I-v)2+ (3+ V)m2+ + (3+ V)n2)

- G2 {(1 - P)((n - 1)24 + 2n3 R2 + n3 (n2 + n))

+ (1 + v) (n (2n2 - 6n + 6)22 + n3 (2n2 + 2n - 2))1

Y = [- v )Q2+(3+v n21 + G 2 I(- )Q2 + (3+ V)n2j

G2 {(1 - P) (2n3 + 2n3 2) + (1 + ) (2g3 + n 2 (8n - 6)R)2] Y

for a semi-infinite plate, where

y y y

! F = G I 
= G 2

=

4,y (22 + M2) 2 4'ry (R2 + n2)2 ' 27ry (R2 + n2) 3
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APPENDIX 2: ANALYTIC INTEGRATION FOR CRACK IN SEMI-INFINITE PLATE

Stress at the M-th interval due to a pair of point forces at the N-th interval on a crack:

3 a - N ffi 1 4 N V/l b 2  - ( 7 - e ) 2 d ?

" ;0M f , ,-elm~ N X X=1=0 y [yN 

f" + 1 + 12y 12y 2

f, [4r(Wy 2 4w (y+ 1)2 (y+n)3 (y+,)4qJ' 17N - I

X (4 lb 2 - (n- e)2) d,

where 1?N - 1 and ?IN denote the values of i? at both ends of the N.th interval. The integral can be
obtained in closed form as follows[ I I:

lmON =F(N) - F ON_- )xM-

in which F (q) stands for

F[(b2 ( __e)2 s n -e +_y - e
F ) =  -- b- b b 2 -(y - e) 2

Xln bb2-(y-e)( -e) + /Ib 2b - (y- e )2 1 b 2 -(q-e)IJ

6y [b 2 -(n--e) 2  1 y - +  y +  b2  b2 + (y + e) ( e)

W y + T1b)2  (yN+ e) (y b2  b (y + 7 )
1

22\/2(i17)3 X 1- 2+ (y+e y+ +{2b2 +(y +e)21 (y+ 77)2)

T b- (y + e)3 (y + e)2 - b2

+ 3 s in -I

1 ( y + e ) 2 - _2 _b _( _+ _ _
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APPENDIX 3: INFLUENCE COEFFICIENTS FOR ELLIPSE

The influence coefficients can be calculated from the stress fields for a point force X or Y

acting at (Q,n) (Appendix 1). Since the relations di = b cos p d p and - dt = a sin p d p prevail along
the ellipse, the coefficients can be expressed asI :

" " XN =

a xM f x (Q,i,x,Y) lx= 1 b cos od~o

N

XN
UXN f aX Q^ x,Y) xI bcospd~oyM y

N
'XY fxy = X Qx (''x'Y)1x=I hcos 0d 0

R" N

and

Y N Y
OxM f x Y= I

* 5- N

* YN = I Y ( ,?,x,y)Iy = a sin p dpyMy

4~-~ N

• Y N N

SXyM Xy

N

where fN stands for integration of the N-th interval and ax, Y a , Y, , Ty are given in
Appendix 

1.

i,,-4',: ; .: . . '. . - ..... .. , . .-. . . -. ,.. ._. .,. ..-..........
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APPENDIX 4: INTEGRALS OVER SINGULARITIES FOR ELLIPSE

The integrals over the singularities for the ellipse can be approximated by the following

simple analytic expressions[61 :

t% XM =e k [w+32 2 w-kw- 4Au AxM = C k [6W6 + (3 - 2k2) W4 - 6k2w 2 - k 4 ]

" 41r (k 2 + w 2 )3

xm= k [- 2w 6 -(1- 6k 2 )w 4  6k 2w2 - k4 1
4r (k 2 + w 2 )3

A XM =e [- 9w 5 - (6 + 2k 2 )w 3 + k 2 (2-k 2 )wJ

xyM 47r (k2 + w2 )3

*AUM = e [-w 6 + 6k2w 4 + k2 (6- k2 )w 2 - 2k4 ]XM 47 (k2 + w2 )3

SA Y¥M k _2W 2( 2)2
,Aoy M = e k [-w 6 -6k 2 w4 +k 2 (2-k 2 )w 2 + 6k4 ]

*47r (k 2 + w 2 )3

ArxYM = -C-1 [(1-2k2 )w 5 +2k 2 (1 + 3k 2 )w 3 +9k 4w]
',M 41r (k2 + w2) 3

where k = b/a

w = tan po ( po = elliptic parameter value of mid-point of M-th interval)

Note that there is a sign change from the original (Reference 6) in the expression for A OYMyM'

" l 4 .. l. *
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APPENDIX 5: STRESSES CLOSE TO ELLIPSE

The stresses at a point infinitesimally close to the ellipse subjected to a body force may be
calculated in the following manner as given by Nisitani 4 1 in somewhat less detail.

Consider an elliptic arc (Fig. Al) of length 2e on the x' axis. When a body force having
densities py,, px0 acts on the arc, the stresses at a point (0,b) (b small) due to px, dx' and p, dx' are
obtained by differentiating the equations of the stress field in an infinite plate (Appendix 1).

x'(3x' 2 + b2 ) b (b2 -X 2)
dax. 41r (b2 + x' 2 )2 4r (b2 + X12 ) y dx'

"" 4b (3b2 + x'2)

x , (x '2 - b2 )  b (3b 2 + X12)
.5. day, = - (x 2  )Px' dx' - py, dx'dy 41r (b2 + x' 2 )2  

41r (b 2 + x' 2 )2

dr.- b (3x' 2 + b2) d'x (3b 2 + x'2 )

(b 2 + x' 2 )2  (b2 + X y

Putting x'= b tan 0 p = tan-; - " dx' = b sec2 0 dO and integrating:
b

7r
'"  = 4 in 0 ocs o3si2 0 + 1)px,+ (cosO20-sin2 0) py, do5 p

:_ 1 f*2 .
a, .oy. f [-sinOcosO (tan2 0 - 1) pX - (3cos2 0 + sin 2 ) p y dO

4w L

(3 si 2 0. (+m COS2 0) pX + sin 0 cos 0 (3 +tan2 0) py] dO

As b tends to zero, 0 tends to r/2 and the stresses become:

1 1

Note the difference in sign of r,,y, compared with that in Reference 4.

• 4• " . ". • . " " - % % " %• " %"
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Resolving the force densities along x and y axes as in Figure A2 gives

SPx, = -py sin 0 cos 0 + px cos 0 sin 0

=2(,-p)sin 20 (A2)

Py= = py Sin 2 0 + px cOs 2 0

Resolving the stresses along the x' and y' axes as in Figure A3 gives

AO x = ox, sin
2 0 +ay, Cos 2 0 +2rx.y Ysin 0cos0

AOy = ox, cos2 0 + ay, sin 2 0 -2rX y, sin 0 cos 0

Arxy o. cos0sin 0+oy coo0sin 0 rxy ,(cos 2 0 -sin 2 0)

Substituting Equations (Al) and (A2) into the above gives

1020 sin 0 cos
Au x =--cos

2 0 (Px CO s2 0 + py sizl 2 0) -sn0co0(P, - Py) sin 20

1 1

I px c s2 0 (1 +sin 2 0) + 1 py (COS2 0 sin 2 0)
2 2 -~cs 2 sn0

Px Py
- (5 + 4 cos 20 - cos 40) + - (1 - cos 40)

16 16

1 sin 0 cos 0
Ay -- sin2 0 (x cos 2 0 + py Sin 2 0) + (px - py) sin 202 2

" P(cOs 2 0 sin2 0) -- py (sin2 0) (1 + cos 2 0)

Px Py
- -(1 - co 40) - -(5 - 4 cos 20 - cos 40)

16 1-
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•' cos 0 p si (cos2 0 - sin2 0) - p,)sin20
xy i 2 (pcos2 0+Psin2 )+4 (-)(n

- -3 p (sin3 0 cosO)- - py (cos 3 0 sin 0)

2 x2

Px py
- (2 sin 20 - sin 40) - -(2 sin 20 + sin 40)
16 16

4

*44

1

4

a,

o4

-4

4 ' 
e

,, .' , " le € d q n "q a"m o
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APPENDIX 6: ADDITIONAL INFLUENCE COEFFICIENTS FOR

COMBINED CRACK AND ELLIPSE

The stresses, o avy and elNM , on the M-th interval of an ellipse due to a pair of

point forces on the N-th interval of a crack are given as( 71 :

xYe = t =O (n2 - ( -e) 2 dn

ye N

"'Y =/c
2 - (n- e) 2 dn

71y. N att=

where

a =xt [-3A4 + 6A 2m 2 + M
4] +

at 0 47ry 2 (A 2 + M2 )3  41ry 2 (A2 + n2 )

X [- 5A6 + (13n 2 + 12n - 12)A 4 + n2 (17n 2 - 72n + 72)A 2 - n4 (n 2 - 12n + 12)]

Y.0 4T 2 ( [A 4 -6A 2m 2 +rM4 ] + 2 2 f't1==41y(A 2 +Mr2)3  41ry 2 (A2 +n

X [-A 6 + (5n 2 - 36n + 12) A4 + n2 (5n 2 + 56n - 72) A 2 - n 4 (n2 + 4n - 12)]

arxy Am_______ 1
= [-3A2 +rM21 +

at CO 2iry 2 (A 2 + M2 )3  4iry 2 (A 2 + n2)

X [2 (3n + 2) A5 + 4n (n 2 - 14n + 12) A3 - 2n 3 (n2 - 18n + 24) A]

.x , -y 1+y

and A = -- , m- , n
yy y

Note the change of sign in - as compared to the equation given in Reference 7.

.tjt'* . . . . .-... . . . ..-.--.....
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oXN ndYN

The stresses, axN and oc on the M-th crack interval due to point forces on the N-th elliptic
interval are

XN = XN YN a YN

xMc xMe ; xMc 0 xMe
x=O -0

.* (see Appendix 3).
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